

EXAMMNATION IN MATHEMATIGS

Gymnázium
Olomouc - Hejčín

I. REQUIREMENTS FOR THE MATURITA EXAMINATION

Logic and Proofs

The student should be able to:
\checkmark express a sentence in ordinary English in symbols
\checkmark explain the mathematical meaning of words at most, at least, just one, each and none
\checkmark explain the term "statement"
\checkmark construct and use truth tables
\checkmark define and use logical operations and quantifiers, simplification of compound statements
\checkmark explain and construct direct and indirect proof, proof by induction.

Sets and Number Sets

The student should be able to:
\checkmark explain the term "set" and list the ways of defining sets
\checkmark use set notation (including symbols for union and intersection) to define intervals
\checkmark recognise types of intervals and express intervals by means of inequalities
\checkmark explain the basic set operations and use Venn's diagrams
\checkmark explain the difference between a digit and a number
\checkmark define the different number sets (Natural, Integer, Rational, Irrational and Real numbers) and appreciate how they fit on a number line
\checkmark explain the relationships between these number sets (eg.Natural numbers are a subset of Integers)
\checkmark define a binary operation
\checkmark list four basic binary operations
\checkmark determine if a given binary operation is associative, distributive and commutative, what its identity element is, and how the inverse of an element may be found
\checkmark explain the statement a is divisible by b and express it in a symbolic language
\checkmark explain the term "prime number"
\checkmark use the rules for divisibility and write proofs
\checkmark find the modulus of a real number, and state its geometrical significance.
\checkmark explain the basic properties of modulus of a real number

Algebraic Expressions

The student should be able to:
\checkmark define a polynomial and perform four basic operations on polynomials
\checkmark define the domain of an algebraic expression
\checkmark find the value of a polynomial for a given value of x
\checkmark expand brackets
\checkmark expand the expressions $(a+b)^{n}$ and $(a-b)^{n}$ for $n=2,3$
\checkmark factorise
\checkmark factorise $a^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}}$ for $\mathrm{n}=2,3$
\checkmark factorise $x^{2}+p x+q, a x^{2}+b x+c$ (Viete's Formulae)
\checkmark collect like terms
\checkmark write an algebraic expression as a single fraction
\checkmark simplify algebraic expressions using any of the above methods
\checkmark change the subject of a formula
\checkmark simplify algebraic expressions using laws of indices and laws of log
\checkmark manipulate algebraic expressions involving a modulus
\checkmark explain the basic differences between a polynomial and an equation

Indices and Logarithms

The student should be able to:

\checkmark explain the meaning of a zero index, natural, rational indices and negative indices
\checkmark simplify, evaluate algebraic and numerical expressions using the laws of indices and state conditions under which expressions are valid
\checkmark define a^{n} for $\mathrm{n} \in \mathrm{N}$
\checkmark define the n-th root of a non-negative number a and state its basic properties(simplifying surds eg. $\sqrt{a b}=\sqrt{a} * \sqrt{b}$)
\checkmark rationalise fractions involving surds
\checkmark convert expressions from index form to surd form and vice versa
\checkmark define a logarithm and the domain of a logarithmic function
\checkmark explain the basic properties of logarithms
\checkmark simplify algebraic and numerical expressions using the laws of logarithms.

Complex Numbers

The student should be able to:
\checkmark define i as the square root of -1
\checkmark solve quadratic equations with complex roots
\checkmark define the real and imaginary parts of a complex number
\checkmark explain what is meant by equal complex numbers
\checkmark explain what is meant by a complex conjugate number and recognise the notation
\checkmark add, subtract, multiply, divide complex numbers in Cartesian form
\checkmark represent complex numbers on Gaussian plane (an Argand diagram)
\checkmark convert complex numbers from Cartesian form to a modulus-argument form and vice versa
\checkmark multiply and divide complex numbers in a modulus-argument form
\checkmark find the roots of a complex number
\checkmark use de Moivre's Theorem for integer exponents
\checkmark solve equations with complex numbers $\left(z^{\mathrm{n}}=\mathrm{a}\right)$.
\checkmark represent equations and inequalities including complex numbers on Gaussian plane (an Argand diagram)

Gymnázium
Olomouc - Hejčín

Functions and Graphs

The student should be able to:
\checkmark define a function and list different ways of describing functions
\checkmark describe the relationship between functions, mappings, binary relations and Cartesian products
\checkmark use function notation correctly
\checkmark find the domain and range of a function
\checkmark classify functions(odd, even, monotonic, one to one, many to one, periodic, asymptotic, having a maximum and a minimum)
\checkmark find the points of intersection of $f(x)$ with the axes
\checkmark define and explain the inverse of a function and its properties
\checkmark determine if a function has an inverse
\checkmark find inverse functions algebraically and geometrically.
\checkmark combine functions to make a composite function
\checkmark recognise the graphs of basic functions $\left(f(x)=c, f(x)=x^{n}\right.$, where $\left.n \in N, Z\right)$
\checkmark sketch the graphs of the above basic functions
\checkmark recognise and sketch graphs of simple transformations ($f(x)+a, f(x+a), a f(x), f(a x),-f(x)$, $\mathrm{f}(-\mathrm{x})$) and combinations of these
\checkmark define and explain the continuity of $\mathrm{f}(\mathrm{x})$ at a given point and interval, basic properties of continuity
\checkmark define and explain the limit of $\mathbf{f}(\mathbf{x})$ and its properties for $x \rightarrow c, x \rightarrow \pm \infty$
\checkmark find the limit of a function

Constant And Linear Functions, Equations and
 Inequalities

The student should be able to:
\checkmark define a constant and a linear function and describe their properties
\checkmark recognise a constant and a linear function from its equation and from its graph
\checkmark draw the graph of a constant and linear function, given their equations and explain geometrical meaning of a and b in $y=a x+b$
\checkmark solve linear equations with one unknown
\checkmark solve systems of linear equations simultaneously, with up to three unknown
\checkmark solve linear inequalities both algebraically and graphically
\checkmark solve problems which lead to linear equations.
\checkmark solve parametric linear equations and their systems graphically and numerically

Quadratic Functions, Equations and

Inequalities

The student should be able to:
\checkmark define a quadratic function and describe its properties
\checkmark recognise a quadratic function from its equation and from its graph
\checkmark draw the graph of a quadratic function, given its equation(3 methods)
\checkmark explain geometrical meaning of a and c in $y=a x^{2}+b x+c$

Gymnázium
Olomouc - Hejčín
\checkmark solve a quadratic equation with one unknown by factorising, completing the square, using the formula or graphically
\checkmark use the discriminant to determine the nature of roots of a quadratic equation
\checkmark use Viete's formulae
\checkmark solve systems of quadratic and linear equations simultaneously(graphical and numerical solution)
\checkmark solve quadratic inequalities both algebraically and graphically
\checkmark solve problems leading to quadratic equations.
\checkmark solve parametric quadratic equations and their systems graphically and numerically

Quotient Functions, Equations and Inequali-

ties

The student should be able to:
\checkmark define a quotient function and explain its properties
\checkmark recognise a quotient function from its equation and from its graph
\checkmark explain relation between indirect proportionality and this function
\checkmark draw the graph of a quotient function
\checkmark solve quotient equations and inequalities numerically and graphically
\checkmark solve simultaneous equations containing this type of equations
\checkmark solve problems leading to quotient equations

Modulus Functions, Equations and Inequalities
 The student should be able to:
 \checkmark define a modulus function and describe its properties
 \checkmark recognise a modulus function from its equation and from its graph
 \checkmark draw the graph of a given modulus function (including functions containing two moduli)
 \checkmark solve equations involving linear or quadratic modulus functions
 \checkmark solve inequalities involving linear or quadratic modulus functions

Exponential and Logarithmic Functions and

Equations

The student should be able to:
\checkmark define an exponential function, including $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$
\checkmark explain its basic properties
\checkmark recognise an exponential function from its graph
\checkmark draw the graph of a given exponential function
\checkmark solve different types of exponential equations
\checkmark define a logarithmic function and describe its properties
\checkmark define $y=\ln x$ as the inverse of $y=e^{x}$
\checkmark recognise a logarithmic function from its graph
\checkmark draw the graph of a given logarithmic function
\checkmark solve different types of logarithmic equations
\checkmark solve simultaneous equations involving exponential and logarithmic equations

Gymnázium
Olomouc - Hejčín

Trigonometric Functions, Expressions and

Equations

The student should be able to:
\checkmark define and use measurement in degrees and radian measure
\checkmark define the basic trigonometric ratios using the unit circle $(\sin x, \cos x, \tan x, \operatorname{cotan} x)$
\checkmark describe basic properties of trigonometric functions
\checkmark find the values of all basic trigonometric functions for $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90° and their multiples for $k \in Z$
\checkmark recognise and sketch the graphs of $y=\sin x, y=\cos x, y=\tan x, y=\operatorname{cotan} x, y=\sec x, y$ $=\operatorname{cosec} x$
\checkmark sketch the graphs of simple transformations of trigonometric functions
\checkmark define the Pythagorean identities, the addition formulae, the double angle identities, the factor formulae, the half angle formulae realise that $\tan x=\sin x / \cos x$ etc.
\checkmark select and use appropriate trig identities to simplify trigonometric expressions and to prove that a given identity is true
\checkmark select and use appropriate trigonometric identities to solve trigonometric equations
\checkmark write solutions to a trigonometric equation both within a specified range and in general
\checkmark find limits of simple trigonometric functions eg. $\lim _{x \rightarrow 0} \frac{\sin x}{x}, \lim _{x \rightarrow 0} \frac{\tan x}{x}$.

Sequences and Series

The student should be able to:
\checkmark define a sequence and a series
\checkmark describe differences between a function and a sequence
\checkmark list different ways of describing sequences
\checkmark recognise the pattern of a sequence and express the nth term algebraically both independently and as a recurrence formula
\checkmark generate consecutive terms of a sequence, given its recurrence formula
\checkmark generate consecutive terms of a sequence, given an independent algebraic expression for the nth term
\checkmark describe basic properties of a given sequence (eg. graph, monotonic sequence, bounded sequences)
\checkmark define an AP and explain its basic properties
\checkmark recognise an arithmetic progression and find its common difference
\checkmark solve problems using the formulae for the nth term and the sum of an A.P.
\checkmark define a GP and explain its basic properties
\checkmark recognise a geometric progression and find its common ratio
\checkmark solve problems using the formulae for the nth term and the sum of a G.P. including interest rates
\checkmark calculate the sum to infinity of a G.P.
\checkmark define convergence and divergence of series
\checkmark explain how to use the formula for the sum of infinite geometrical series for different values of q
\checkmark solve problems based on properties of an AP, a GP and a geo series

Gymnázium
Olomouc - Hejčín
\checkmark define and explain the limit of a sequence
\checkmark describe properties of limits
\checkmark find the limit of a convergent sequence.
\checkmark use sigma notation for series

Differentiation

The student should be able to:
\checkmark explain what is meant by the derived function/derivative:

- its definition from the first principle as a limiting value
- its geometrical meaning as the gradient function
- its physical meaning as a rate of change
\checkmark recognise and use the different forms of notation for differentiation
\checkmark differentiate basic functions and prove the results from the first principle
\checkmark describe the relationship between continuity and the first derivative of $f(x)$ at a given point
\checkmark find the second derivative of a function and use it to identify stationary points
\checkmark differentiate products and quotients
\checkmark use differentiation to find the equation of a tangent and normal to a curve
\checkmark use the gradient function to determine if a given function is increasing or decreasing over a given interval
\checkmark find and identify stationary points as maxima/minima/points of inflexion (necessary and sufficient conditions)
\checkmark apply differentiation to problems in velocity and acceleration
\checkmark find and identify points of inflexion (necessary and sufficient conditions) and intervals in which a function is concave up/down
\checkmark use the above in sketching curves and in solving problems about optimisation
\checkmark use the chain rule in solving practical problems
\checkmark differentiate implicit functions

Curve Sketching

The student should be able to:
\checkmark sketch the graphs of basic functions and simple transformations of these eg. $f(x)=(x-2)^{2}+4$, labelling clearly any points of intersection with the axes
\checkmark sketch curves of more complicated functions by:

- finding the domain and the range of a given function
- investigating the basic properties of $f(x)(e g . o d d$, even, periodicity, continuity)
- investigating behavior of $f(x)$ at points of discontinuity
- finding points of intersection with the axes
- finding stationary points and determining their nature
- finding intervals in which $f(x)$ is increasing(decreasing)
- finding points of inflexion
- finding intervals in which $f(x)$ is concave up/down/
- investigating asymptotes without gradient and asymptotes with gradient
\checkmark label sketches of curves correctly.

Gymnázium
Olomouc- Hejčín

Integration

The student should be able to:
\checkmark recognise integration as the reverse process of differentiation
\checkmark use Leibnitz notation
\checkmark explain primitive/antiderivative/ of $f(x)$
\checkmark explain properties of non-definite intergral
\checkmark recognise integration as a process of summation
\checkmark integrate a given function by means of formulae
\checkmark integrate a given function by parts and by substitution
\checkmark evaluate definite integral
\checkmark use integration to find the area under the curve and the volume of the solids

Combinatorics

The student should be able to:
\checkmark use factorial notation
\checkmark solve problems based on combinations without/with repetition
\checkmark solve problems based on permutations without/with repetition
\checkmark describe the difference between a permutation and a combination
\checkmark use the notation
\checkmark explain basic properties of binomial coefficients
\checkmark solve more difficult problems involving permutations and combinations (with and without repetition of objects)
\checkmark recognise the connection between Pascal's Triangle and the Binomial coefficients
\checkmark state the Binomial Theorem
\checkmark use the Binomial Theorem to expand $(\mathrm{a}+\mathrm{bx})^{\mathrm{n}}$ for positive integer n and solve other exercises concerning it
\checkmark solve equations and simplify expressions containing binomial coefficients

Probability

The student should be able to:
\checkmark explain the mathematical meaning of an event
\checkmark define the probability of an event taking place
\checkmark find the probability of an event based on random selection
\checkmark recognise mutually exclusive events A, B and use the addition rule to calculate the probability of (A or B)
\checkmark recognise independent events C, D and use the multiplication rule to calculate the probability of (C and D)
\checkmark draw and use space diagrams and tree diagrams
\checkmark recognise dependent events and calculate the associated conditional probabilities
\checkmark solve problems based on binomial probabilities

Gymnázium
Olomouc- Hejčín

Statistics

The student should be able to:
\checkmark explain the aims of statistics and their applications
\checkmark organise collected data in frequency tables
\checkmark calculate the mean, median, mode, standard deviation and quartiles of a set of data
\checkmark represent data graphically using bar charts, pie charts, histograms, frequency polygons, cumulative frequency graphs
\checkmark interpret and compare statistical data

Constructive Geometry in the Plane

The student should be able to:
\checkmark explain what is meant by a point, a line, a half-line a line segment and a plane
\checkmark use the notation for the above
\checkmark find the locus of a point by means of construction
\checkmark express geometric ideas by means of symbolic language
\checkmark define an angle and classify angles
\checkmark define a circle and the parts of a circle
\checkmark explain basic properties of circles
\checkmark solve problems leading to construction of cirles
\checkmark calculate angles using the circle angle theorems
\checkmark calculate areas of parts of a circle
\checkmark define a triangle and a quadrilateral, their basic elements and their basic properties
\checkmark classify triangles and quadrilaterals
\checkmark construct a triangle given by three elements of the triangle, and produce an analysis, a description and a discussion of the construction
\checkmark prove if two triangles are congruent or similar
\checkmark use the Pythagorean and Euclidean theorems for triangles
\checkmark define the different types of transformation and their basic properties (translation, reflection, rotation and dilatation)
\checkmark use the above transformations in construction problems
\checkmark calculate the area and circumference of a circle.
\checkmark calculate the areas and perimeters of polygons, segments and sectors of circles

Trigonometry

The student should be able to:
\checkmark define the basic trigonometric ratios
\checkmark find the missing sides/angles in a right-angled triangle, using the trig ratios
\checkmark define and write the proof of the sine and cosine rules
\checkmark find the missing sides/angles in any triangle, using the sine and cosine rules
\checkmark solve topographic problems leading to the sine and cosine rules
\checkmark solve three-dimensional trig problems.
\checkmark Solve topographical tasks concerninng bearngs, the angles of depression and elevation

Gymnázium
Olomouc- Hejčín

Constructive Geometry in Space

The student should be able to:
\checkmark describe the different configurations in space of:

- a point and a line
- a point and a plane
- two lines
- a line and a plane
- three planes
\checkmark explain theorems concerning different configurations points, lines and planes in space
\checkmark list the conditions for lines and planes to be parallel or perpendicular
\checkmark define the angle between 2 intersecting lines, a line and a plane, 2 planes and skew lines
\checkmark calculate the angle between:
- two intersecting lines
- a line and a plane
- two planes
- two skew lines
\checkmark construct and calculate the perpendicular distance of a point from a line and the perpendicular distance of a point from a plane
\checkmark construct and calculate the perpendicular distance of a line /a plane/ from a parallel plane
\checkmark define a solid and explain its basic properties
\checkmark classify solids and describe their basic properties
\checkmark construct solids using the parallel projection
\checkmark construct sections through solids and explain basic principles of used mappings
\checkmark explain Cavallieri's principle
\checkmark calculate the volumes and surface areas of solids and their parts
\checkmark solve three-dimensional problems using trigonometry or vectors.

Vector Geometry

The student should be able to:
\checkmark explain what is meant by a vector
\checkmark add, subtract and find scalar multiples of vectors in two-dimensions (numerically and graphically) and in three-dimensions (numerically)
\checkmark find the magnitude of a vector
\checkmark recognise and write vector equations of lines, half-lines and line segments in two- and three- dimensions
\checkmark determine if two given vectors are intersecting, parallel or skew
\checkmark define the scalar product and list its main properties
\checkmark use the scalar product in solving problems
\checkmark explain difference between the direction vector and the normal vector of a line in the plane
\checkmark understand the significance of normal vectors
\checkmark calculate angles in two- or three-dimensional situations involving vectors

Gymnázium
Olomouc - Hejčín
\checkmark define the vector product and list ist geometrical properties
\checkmark use the vector product in solving problems.

Coordinate Geometry in the Plane -
 the Straight Line

The student should be able to:
\checkmark define 3 types of equations of a line
\checkmark change from one form of the equation of a line to the other
\checkmark find the mid-point and length of a line, given the coordinates of its end-points
\checkmark find the gradient of a line, given the coordinates of two points on the line
\checkmark recognise the equation of a straight line, $\mathbf{y}=\mathbf{k x}+\mathbf{q}$, and explain the geometrical significance of k and q
\checkmark determine if two given lines are parallel or intersecting especially if they are perpendicular
\checkmark write the equation of a line given the coordinates of two points on the line or given its gradient and the coordinates of one point on the line
\checkmark find the equations of lines going through a given point and having a certain angle to a given line
\checkmark find the coordinates of the point of intersection of two lines
\checkmark find the angle between two lines
\checkmark find the perpendicular distance of a given point from a given line
\checkmark find the perpendicular distance between 2 parallel lines
\checkmark find the locus of a point using co-ordinate geometry.

The Circle

The student should be able to:
\checkmark define a circle as the locus of points and find its equation
\checkmark define a circle as the locus of points and derive its equation from its definition
\checkmark recognise the equation of a circle in the form $(x-m)^{2}+(y-n)^{2}=r^{2}$ and in the form $x^{2}+y^{2}+2 A x+2 B y+C=0$, and be able to convert one form in to the other
\checkmark write the equation of a circle, given the coordinates of its centre and the length of its radius
\checkmark find the centre and radius of a circle, given its equation
\checkmark find the equation of a circle/ the coordinates of the centre and radius given by three points
\checkmark find the equation of a tangent to a circle:

- at a given point
- parallel to a given line
- perpendicular to a given line
\checkmark find the length of a tangent to a circle from a given point
\checkmark find the angle between tangents

Gymnázium
Olomouc - Hejčín
\checkmark describe configurations of a circle and a line or two circles
\checkmark determine if two circles intersect or touch internally or externally, given their equations
\checkmark solve a variety of circle problems with the aid of basic geometric facts: eg. the perpendicular bisector of a chord goes through the centre of the circle.
\checkmark define a sphere and describe the basic properties of a sphere, the plane of tangency
\checkmark solve problems involving spheres

Conic Sections

The student should be able to:
\checkmark define the parabola, the ellipse and the hyperbola as the locus of a point
\checkmark describe the construction of the parabola, the hyperbola and the ellipse
\checkmark give the equations and describe the basic properties of the parabola, ellipse and hyperbola
\checkmark describe configurations of a line with each one of: the parabola, the hyperbola and the ellipse
\checkmark find the tangent to these curves at a given point of tangency and at a point
\checkmark find the angle between tangents
\checkmark find the equation of a tangent to a given curve being parallel/perpendicular to a given line

Co-ordinate Geometry in Space

The student should be able to:
\checkmark define the vector equation of a line, a half-line and a lines segment
\checkmark explain a collinear/ non-collinear point
\checkmark explain the basic configuration of lines in space
\checkmark find the vector equation of a line going through a given point parallel/perpendicular to a given line
\checkmark the angle between 2 lines in space
\checkmark define the vector equation and the Cartesian equation of a plane, the half-plane
\checkmark explain the basic configrations of a point, a line and a plane and 2 planes
\checkmark find the angle between a line, a plane and 2 planes
\checkmark find a perpendicular plane to given 2 planes going through a given point
\checkmark find the perpendicular distance of a point from a line/a plane
\checkmark find the perpendicular distance of a parallel line/plane from a plane

Gymnázium
Olomouc - Hejčín

II. THE DESCRIPTION OF THE MATURITA EXAMINATION

In Mathematics the Maturita Examination consists of two parts :

- WRITTEN EXAMIINATION (April). There are two parts.

In part A students are asked to solve $\mathbf{1 5}$ simple examples in the form of a multiple choice test. They can use only non-graphical calculators. The time limit is $\mathbf{6 0}$ minutes.

In part B students are asked to choose and solve four out out of six complex examples.
Tables and non-graphical calculators can be used. Time limit is $\mathbf{1 8 0}$ minutes.
The maximum mark is 60 points.

- ORAL EXAMINATION (May). Students are asked to choose a question dealing with a particular area of Mathematics. Students should demonstrate complex understanding of problems (based mainly on the theoretical principles proved on the particular examples). Time limit is 15 minutes.

The maximum assessment is $\mathbf{4 0}$ points.

Prostějov 9.9.2019 8:25:19.

NOTES:

